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Abstract—The AI music/audio fields are rapidly
gaining attention due to Generative AI, following
the increasing maturity of Machine Learning (ML)
models in the Computer Vision (CV) and Natural
Language Processing (NLP) fields. Generally, Gen-
erative AI tools are broadly categorised into a)
general-purposed such as ChatGPT , b) specialised
such as CLIP [1] , and c) application-specific such
as MusicLM [2] In this paper, we review music
Generative AI tools by first understanding pioneering
image Generative AI models, then introducing the
common concepts and techniques applied for design-
ing Generative AIs. Finally, an overview of the recent
audio-related Generative AI models such as AudioLM
[3], and LP-MusicCaps [4] is presented. The paper’s
contribution is to review the characteristics, advan-
tages and differences of the respective ML models
and AI music applications along with possible future
work for Generative AI in the music field.

I. INTRODUCTION

Following advances in Natural Language
Processing (NLP) models such as BERT [5]
and BART [6], the audio/music fields are rapidly
gaining focus, such as speech recognition and
music generation. The selection of music datasets
such as MusicCaps [2] is also rather limited if
compared to image datasets.

In terms of ML image generation, Stable Diffusion
[7] is one of the most popular and successful
models due to its high resolution and creative
results. Pioneering works, such as DALL-E [8] and
CLIP-Gen [9] have also investigated the feasibility
of generating images with Variational Autoencoder
(VAE) and Generative Adversarial Network (GAN)
[10], which are further reviewed in Section 2.
There have been several successful text-to-music
models so far. Examples are AudioLM [3] and
MusicLM [2] by Google, and MusicGen [11] by
Meta. Moreover, a very recent work in music-to-
text generation has also been proven feasible in
LP-MusicCaps [4].

Another important technology is embedding
representations , where numerical representations

of real-world objects are used by Generative
AI to understand complex knowledge domains.
An example is the MULAN joint text-music
embedding model introduced in [12] and applied
in [2]. Several works [13, 1, 12, 14] have proven
that the application of joint embedding helps in
defining relationships between cross-modal data
and improving the generation quality.

The paper starts with an introduction of the pio-
neering image Generative AI models to understand
the general design of Generative AI on the high
level. Then, the available music-related ML models
will be presented and compared to give a better
idea of their working principles. Where relevant,
an overview of existing music generation tools
will also be compared, for instance, Melobytes
and Mubert. Finally, the commonly used metrics
for image and audio/music quality evaluation are
introduced, and the paper concludes with discussion
on limitations and future work of Generative AI for
music.

II. IMAGE MODELS

In this section, popular Generative AI models for
image generation are presented along with some
examples of generated images. Finally, the section
concludes with comparisons between the different
AI image models in terms of their relevance and
quality.

A. Stable Diffusion

The Stable Diffusion model [7] is designed for
text-to-image generation. It is built on top of the
latent diffusion model (LDM) [15]. Its strategy
is to gradually and repeatedly add noise to an
input, then training takes place for removing
the noise and restoring the encoded input into
its original state. While excellent quality can
easily be achieved through this method, it is
computationally expensive and slow due to the
number of iterations required. Then, with the
help from the popular CLIP [1] text-image joint
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embedding, the resulting text-image embeddings
are used for model conditioning during training
and inference.

From the qualitative perspective, some examples
are shown in Figure 1. Compared to other models
which often produces low quality images, Stable
Diffusion pushed the limits with its ability to pro-
duce high quality images [15].

Figure 1. Example Generations from Stable Diffusion [7]

B. DALL-E

DALL-E [8] is another Generative AI for text-to-
image generation. Its main component is discrete
variational autoencoder (dVAE) [8] instead. As
VAEs are known for their limitation in terms of
generation resolution and quality, a larger codebook
size of 8192 is used to mitigate the issue [8]. This
allows the latent to learn and store more features
and information. Once the input image is tokenised
with dVAE, an autoregressive transformer is ap-
plied for modelling the text-image joint space [8].
The components are trained in two stages, first
dVAE, followed by the autoregressive transformer.
Some generations from DALL-E are shown in Fig-
ure 2. While the generations satisfy its respective
prompts, the quality of the images is arguably not
as attractive as Stable Diffusion (Figure 1).

Figure 2. Example Generations from DALL-E [8]

C. CLIP-Gen

CLIP-Gen [9] is a transformer-based text-to-image
Generative AI model. Similar to its name, it
applies the CLIP joint text-image embedding
model [1] internally for encoding the text input.
For encoding the reference image during training
and decoding the generated image during inference,
VQ-GAN [16, 10] architecture is used. For better
understanding, the CLIP model will be introduced,
followed by a deeper brief into the components of
CLIP-Gen.

1) CLIP: CLIP jointly trains an image encoder
and a text encoder to predict the correct pairings
of a batch of (image, text) training examples.
CLIP consists of two encoding towers for image

and text respectively [1]. For the image part,
proven architectures such as ResNet-50 [17] are
considered, with small modifications in terms of
additional layer normalisation and combined patch
PE. When it comes to the text encoder, a modified
CLIP transformer [1] operating on lower-cased
byte pair encoding (BPE) is applied.

To access CLIP, experiments have been done
on 1) zero-shot prediction, and 2) visual n-
grams comparison in [1]. In experiment 1,
CLIP outperforms pure ResNet-50 when asked
to recognise actions in videos. CLIP has an
improvement of 14.5% with the Kinetics700
dataset and outperforms by 7.7% on UCF101
dataset . In the second experiment, CLIP exhibits
a top-5 accuracy of 95%, which is matching
Inception-V4 [18] (baseline).

2) CLIP-Gen: Next, CLIP-Gen [9] is a
combination of CLIP [1] and VQ-GAN [16,
10]. CLIP is used to extract text-image key
features from the joint space whereas VQ-GAN
is used as an image tokenizer. Joining the two,
the transformer decoder learns to reconstruct the
image tokens from VQ-GAN, conditioned on
embeddings from CLIP.

Qualitatively, some results can be seen from Figure
3. While CLIP-Gen outperforms DALL-E (Figure
2) slightly, the styles are arguably simple when
compared to Stable Diffusion (Figure 1).

Figure 3. Example Generations from CLIP-Gen [9]

D. Discussion

Based on the examples shown above for the respec-
tive image generation model, the different aspects
of the generated images will be compared in Table
I.

III. AUDIO/MUSIC MODELS

With increasing attention to Generative AI in the
audio/music field, there have been several works
published for studying the possibility and feasibility
of audio/music generation . These researches of
Generative AI for audio/music are presented below
along with some other examples of closed-source
Generative AI tools for music.

A. LP-MusicCaps

LP-MusicCaps [4] is a recent model for music-
to-text generation which wad introduced very
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Table I
STYLES AND QUALITY COMPARISON OF THE GENERATED IMAGE

Model Type Relevance Quality Customisation
Stable Diffusion Diffusion High High Text prompt and optional image

condition
DALL-E Discrete VAE Good Acceptable Text prompt and optional image

condition
CLIP-Gen Transformer Good Acceptable Text prompt and optional image

condition

recently in [4]. The model is motivated by the
limited amount of music dataset, and the fact
that the procedure of gathering music datasets
is complex and costly. The resulting size of the
dataset is often limited too, for example, the
popular MusicCaps [2] has only 5521 text-music
entries. Thus, LP-MusicCaps allows the expansion
of music dataset with reliable pseudo-data.

An encoder-decoder model is involved in the
architecture of LP-MusicCaps [4]. Instead of
designing from scratch, the BART [6] model
is applied due to its wide compatibility and
outstanding performance on sequential data. For
training the text conditioner, the pseudo captions
generated from GPT3.5 Turbo are used [4]. In
the pseudo captions generation phase, model
hallucinations are also checked in case the LLM
is making up its output, deviating from facts.

The results [4] has shown that LP-MusicCaps has
taken the win in the transfer-learning task in terms
of BERT-score. An improvement in novelty score
has also proven that repetitions and overlap to the
training dataset has been reduced and minimised.

B. Text-to-Audio/Music Generative SOTA Models

In this section, audio/music generation models
conditioned on text will be described. They are
usually open-source and released as research
papers. For better understanding, their respective
architectures and distinct characteristics will be
described.

1) AudioLM: In [3], AudioLM is introduced for
generating high-quality and coherent audio from
text inputs. The results are proven through speech
and piano continuation experiments. The target
acoustic tokens are generated with the encoder
and RVQ in Soundstream [19] whereas the target
semantic tokens are produced with the intermediate
layer of w2v-BERT [14]. These models takes audio
as input and outputs the respective types of token.
They are then used for training the modelling
stages for coherency.

There are three subsequent modelling stages as
shown in Figure 4, which are built with trans-

formers decoder for learning the next tokens given
current ground-truth tokens [3].

Figure 4. Token Modelling Stages in AudioLM [3]

Each stage is summarised in Table II in terms
of the involved tokens type and the modelled
distribution.

2) MusicLM: For text-to-music generation,
MusicLM is proposed in [2] as an extension to
AudioLM [3], with MULAN [12] joint text-music
embedding model included for encoding the
text input. With examples shown on the Google
MusicLM website [2], the model is able to take
different types of text input for generating music
of different length. Some examples of text input
include rich caption, long story-like texts, art
captions, and more. On top of conditioning with
text, the model can also be conditioned on music
or audio.

In this case, the audio embedding tower used
in MULAN is ResNet50 [17] whereas the text
embedding model remains as BERT [5]. MULAN
is used in the model due to its ability to learn the
cross-modal characteristics even if the audio-text
pair is weakly associated [12, 2]. This lowers the
requirements of training data.

In terms of generation quality, a selection of
demos can be found here. While it supports both
short (several seconds) and long (a few minutes)
generation, and accepts short prompts or long
story-like captions, the generated music is not
always pleasant to listen to. There are cases where
the melody is out-of-tune, and the quality sounds
coarse. When it is prompted to generate tunes from
classical instrumentals, the results do not always
sound natural. For example, a request of piano
tunes may turn out to resemble more from an
organ instead. This may be related to training data
quality, but there is a wide room of improvements
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Table II
AUDIOLM MODELLING STAGES [3]

Stage Objective
Semantic For capturing the temporal structure, the autoregressive distribution p(zt|z<t) is learnt.
Coarse Acoustic Conditioned on the semantic tokens. Aims to recover the audio properties and charac-

teristics with a masked language modelling objective. A simple flattening approach is
taken for learning the hierarchical structure, resulting in a poor reconstruction.

Fine Acoustic Conditioned on the coarse acoustic tokens. Aims to upgrade the resulting audio quality
by removing the lossy artifacts from compression.

here in terms of melody and quality.

3) MusicGen: In contrast to other works [2],
MusicGen, another music Generative AI model
relies only on a single transformer decoder for
acoustic modelling [11]. In the experiment, the
text conditioning stage is added for text-to-music
generation. Existing proven encoders such as
FLAN-T5 [20] are adapted. The model also allows
melody conditioning, where it is trained with
data in time-frequency format. There were also
experiments done on raw chromogram, but it is
observed that overfitting often occurs [11].

A significant contribution of MusicGen is the to-
ken interleaving patterns introduced. From Figure
5, there are four different patterns illustrated in
pictures.

Figure 5. Codebook interleaving patterns in MusicGen [11]

The first being the straightforward Flattening Pat-
tern (Equation 1). Assuming we have K code-
books in the encodec, the codes are flatten such
that the representation at time step t is extracted
sequentially one codebook per timestep, then con-
catenated. However, complexity is higher due to
certain level of lost in gain [11].

pt,k(Vt−1, ..., V0)
∆
= P[V t, k|Vt−1, ..., V0]

∀t > 0,∀k,P[Ṽt,k] = pt,k(Ṽt−1, ..., Ṽ0)
(1)

With Flattening Pattern as the base, Parallel Pat-
tern is introduced and defined as Equation 2 [11]:

Ps = (s, k) : k ∈ 1, ...,K (2)

We can also have the Vall-E Pattern defined as
Equation 3 [11]:

{
Ps = (s, 1) if s ≤ T

Ps = (s, k) : k ∈ 2, ...,K otherwise
(3)

Lastly, the Delay Pattern decomposition is de-
scribed as Equation 4 [11]:

Ps = (s− k + 1, k) : k ∈ 1, ...,K, s− k ≥ 0 (4)

Apart from contributions, MusicGen has limita-
tions such as low-quality of the generated audio
with the pretrained musicgen-small model on
HuggingFace. Test generation of the model is also
accessible here. If compared to [2], MusicGen has
some limitations on the length of the input se-
quence. Future work also includes finding ways of
supporting fine-grained control over the generated
acoustic coherence and quality [11].

C. Generative Music Applications

There are ready applications on the market where
users can generate high quality royalty-free
music or subscribed to access more premium
features. These are mostly closed-source, thus
the applications will only be introduced on a
high-level basis.

1) Melobytes: On top of text-to-music
generation, Melobytes offers more features
such as image-to-music, image-to-song, and video-
to-music generations. For text-to-music generation,
Melobytes allows a wider range of customisation
than Mubert. These include input text language,
tempo (beats per minute), tonality (major or minor
key), acappella generation, and more. They also
allow addition of lyrics with AI completion support.

2) Mubert: Mubert is a text-to-music generation
platform, where a user can generate a track for free,
customised through text-prompt. It allows genera-
tion as short as 15 seconds, up to 25 minutes. There
are some ready samples here for immediate listen-
ing. Overall, the generation quality is very good
such that a) the music fits the prompt and category
well, b) the composition is very coherent, and c)
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Table III
STYLES AND QUALITY COMPARISON OF THE GENERATED MUSIC

Model Relevance Quality Music Coherence Customisation
MusicLM Acceptable Bad Inconsistent Text prompt and optional

melody condition
MusicGen Acceptable Bad Inconsistent Text prompt and optional

melody condition
Mubert High Excellent Smooth and logical Text prompt and duration
Melobytes High Excellent Smooth and logical Tempo, lyrics, tonality,

vocal and many more

the quality is aligned with professional composed
tunes. There is a paid contributing opportunity in
Mubert, where artists can upload their samples,
tracks and loops to Mubert Studio. This also helps
in expanding its reference database to contain a
large amount of professional contents, thus largely
improving its music generation quality.

D. Discussion

In Table III, we will compare the different aspects
of the generated music from different models and
applications stated in the previous subsections.

IV. CONCLUSION AND FUTURE WORK

While there has been several eye-catching works
showing the feasibility of audio and music
generative models, there remains a wide room of
improvements. Some of the challenges and future
work are listed and described below.

1) Ethics: A big concern in generative models
is ethics. The generated works of these models
usually requires no license and can be used by
anyone in the public (with citations). However,
as references and training data may overlap with
existing copyrighted work, this may turn out unfair
for the original creators. A possible approach may
be constantly evaluating legal matters and policies,
then redefining them whenever required.

Another sensitive issue comes from religion
or culture differences. Public feedback should
always be taken into consideration so that the
related problems can be eliminated efficiently.
Where possible, negative keys may be used during
training so that the model is able to learn and
avoid these in the generations. One example is the
use of negative keys in InfoNCE Contrastive Loss
. Post-processing filters may also be introduced to
mask and replace sensitive information.

2) Reinforcement Learning (RL): There are
recent interest around incorporating RL during the
training phase of a model. This means that the
Markov decision process (MDP) in RL is adapted
and a reward/penalty function is defined for the
model to learn. However, completely replacing the

training style with RL may not be relevant. Some
issues are reward function is difficult to define due
to the black-box nature of certain models. Where
applicable, we may be able to apply RL in the
fine-tuning phase such that the model is trained to
specialise in certain categories of task.

3) Advancement in Image-Music Generation:
There has been an increasing number of music
generation models conditioned on text prompts,
but there has not been an attempt for exploring the
possibilities on image prompts. Similarly, there has
been various research on text-conditioned image
generation models but this is not the case when
it comes to audio-conditioned image generation
models. There is a strong potential in this field and
successful publications in image-music generations
could bring ML and AI a step forward.

4) VAE-GAN: VAEs have an advantage in effi-
cient sampling as well as great level of diversity in
its latent space whereas GANs are known for its
excellent generation quality under short generation
time. While diffusion has good diversity as well as
generation quality, it requires a long time for data
generation. However, VAEs and GANs are able to
achieve good result (diversity and quality) when
being combined. VAE-GANs have potentials and
can be further worked on in the audio/music field.
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